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A B S T R A C T   

Ambient air pollution, temperature, and social stressor exposures are linked with asthma risk, with potential 
synergistic effects. We examined associations for acute pollution and temperature exposures, with modification 
by neighborhood violent crime and socioeconomic deprivation, on asthma morbidity among children aged 5–17 
years year-round in New York City. Using conditional logistic regression in a time-stratified, case-crossover 
design, we quantified percent excess risk of asthma event per 10-unit increase in daily, residence-specific ex-
posures to PM2.5, NO2, SO2, O3, and minimum daily temperature (Tmin). Data on 145,834 asthma cases pre-
senting to NYC emergency departments from 2005 to 2011 were obtained from the New York Statewide Planning 
and Research Cooperative System (SPARCS). Residence- and day-specific spatiotemporal exposures were 
assigned using the NYC Community Air Survey (NYCCAS) spatial data and daily EPA pollution and NOAA 
weather data. Point-level NYPD violent crime data for 2009 (study midpoint) was aggregated, and Socioeco-
nomic Deprivation Index (SDI) scores assigned, by census tract. Separate models were fit for each pollutant or 
temperature exposure for lag days 0–6, controlling for co-exposures and humidity, and mutually-adjusted in-
teractions (modification) by quintile of violent crime and SDI were assessed. We observed stronger main effects 
for PM2.5 and SO2 in the cold season on lag day 1 [4.90% (95% CI: 3.77–6.04) and 8.57% (5.99–11.21), 
respectively]; Tmin in the cold season on lag day 0 [2.26% (1.25–3.28)]; and NO2 and O3 in the warm season on 
lag days 1 [7.86% (6.66–9.07)] and 2 [4.75% (3.53–5.97)], respectively. Violence and SDI modified the main 
effects in a non-linear manner; contrary to hypotheses, we found stronger associations in lower-violence and 
-deprivation quintiles. At very high stressor exposures, although asthma exacerbations were highly prevalent, 
pollution effects were less apparent—suggesting potential saturation effects in socio-environmental synergism.   

1. Introduction 

Primary air pollutants from fossil-fuel combustion and climate- 
linked secondary air pollutants like ground-level ozone and extreme 
ambient temperatures are among the leading environmental causes of 
population health disparities worldwide that continue to worsen under 
the rapidly changing global climate (Keswani et al., 2022; Romanello 
et al., 2022). Compared to adults, children are particularly vulnerable to 
the adverse health effects of air pollution and temperature due to their 
underdeveloped natural defense mechanisms like the blood-brain 

barrier and immune system, greater skin surface area relative to body 
mass, and lesser ability to regulate core body temperature (Arpin et al., 
2021; Perera and Nadeau, 2022). 

Asthma is the most prevalent chronic childhood illness in the United 
States (Johnson et al., 2021; Pate, 2021; Zhang and Zheng, 2022), with 
children of color, particularly Black and Hispanic children, and children 
belonging to low socio-economic position (SEP) communities affected 
disproportionately (Johnson et al., 2021; Keet et al., 2017; Pate, 2021; 
Zanobetti et al., 2022). Additionally, areas with higher levels of ur-
banization experience higher morbidity rates for childhood asthma, 
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potentially due to higher levels of indoor asthma triggers, traffic density, 
and social stress (Keet et al., 2017; P. W. Sullivan et al., 2019). Exposures 
to ambient air pollution and temperature have been linked, both inde-
pendently (Cong et al., 2017; Han et al., 2023; Tiotiu et al., 2020; Uibel 
et al., 2022; Zheng et al., 2015, 2021) and synergistically (Anenberg 
et al., 2020; Grigorieva and Lukyanets, 2021), to childhood asthma 
incidence and acute exacerbations of existing asthma that can result in 
emergency department (ED) visits and hospitalizations. Chronic stress 
from community-level social stressors such as violence, poverty, and 
racial residential segregation has also been associated with increased 
asthma morbidity (Fujiwara, 2008; Landeo-Gutierrez et al., 2020; K. 
Sullivan and Thakur, 2020; Yonas et al., 2012). Lower-SEP children are 
generally exposed to higher levels of air pollution (Collins and Grineski, 
2022; Jbaily et al., 2022; J. J. Liu et al., 2021) and temperature (Benz 
and Burney, 2021; Gronlund, 2014; Renteria et al., 2022), and addi-
tionally, may bear a greater social stressor burden that might increase 
their susceptibility to developing adverse health outcomes, like asthma, 
in greater proportions than in socio-economically advantaged commu-
nities (Clougherty et al., 2014, 2022; Landeo-Gutierrez et al., 2020; K. 
Sullivan and Thakur, 2020; Yonas et al., 2012). Evidence suggests that 
such SEP-related susceptibility to air pollution and temperature health 
effects may be attributable to chronic stress resulting from exposures to 
various social stressors (Clougherty et al., 2014, 2022). Chronic stress 
negatively influences the immune, endocrine, and metabolic functions 
(McEwen, 2012, 2017; McEwen and Tucker, 2011), rendering the bodily 
systems vulnerable to environmental insults (Peters et al., 2021). As air 
pollution and temperature exposures, as well as social stressors, are 
usually spatially patterned by SEP, disentangling their relative contri-
butions and quantifying their interactions could enhance our capacity to 
identify and characterize population groups vulnerable to their health 
effects (Clougherty et al., 2014, 2022). This in turn can effectively and 
efficiently direct research, policies, and interventions aimed at reducing 
socio-economic disparities in asthma morbidity (Clougherty et al., 2014, 
2022). 

Prior epidemiologic studies quantifying the combined effects of 
environmental exposures and social stressors like violence (Chiu et al., 
2014; Clougherty et al., 2007; Sheffield et al., 2019; J. L. Shmool et al., 
2014), SEP/material deprivation (Gleason et al., 2014; M. Lin et al., 
2004; S. Lin et al., 2008; Neidell, 2004; O’Lenick et al., 2017; Rosenlund 
et al., 2009; Yang et al., 2003; Yap et al., 2013), and family/parental 
stress (Chen et al., 2008; Deng et al., 2018; Islam et al., 2011; Ranci 
et al., 2017; Shankardass et al., 2009) on childhood asthma generally 
suggest synergistic associations. However, most of these studies have 
exclusively focused on air pollution exposures and considered in-
teractions between single exposure-stressor pairs (Appleton et al., 2016; 
Clougherty et al., 2014; Clougherty and Kubzansky, 2009). In the cur-
rent study, we examined variations in childhood asthma morbidity in 
relation to acute exposures to multiple ambient air pollutants and 
ambient temperature within New York City (NYC). We also quantified 
interactions between environmental exposures (air pollution and tem-
perature) and two critical urban social stressors in NYC—neighborhood 
violent crime and socioeconomic deprivation (J. L. Shmool et al., 2014; 
J. L. C. Shmool et al., 2015). We did so by leveraging the New York 
Statewide Planning and Research Cooperative System (SPARCS) ED visit 
data from 2005 to 2011 for NYC and assigning fine-scale spatiotemporal 
exposure estimates to each presenting asthma case during this period. 
We hypothesized that elevated levels of air pollution and temperature 
exposures would be positively associated with increased ED visit risk for 
childhood asthma and that the associations will be stronger among 
children belonging to higher violent crime and socioeconomically 
deprived communities. 

2. Methods 

2.1. Study population and outcome 

We included all children, aged 5–17 years, who presented at NYC 
emergency departments between January 1, 2005, and December 31, 
2011, and received a primary diagnosis of asthma corresponding to an 
International Classification of Diseases, Ninth Revision (ICD-9) code of 
493 and the specific diagnoses therein. Data on all in-patient (admitted) 
and out-patient unscheduled asthma ED visits during the study period 
(n = 145,838) were obtained from the New York Statewide Planning and 
Research Cooperative System (SPARCS) (New York State Department of 
Health, 2022). SPARCS is a comprehensive data reporting system for 
New York State that collects patient-level information on demographic 
characteristics, diagnoses and treatments, services availed, and medical 
expenses for each encounter. Information on primary diagnostic code, 
admission type (inpatient or outpatient), date of admission, age at 
admission, sex, race/ethnicity, and location (latitude and longitude) of 
residence at admission were extracted for each asthma case from 
SPARCS. To focus on acute asthma events, we limited our analyses to ED 
visits marked ‘emergent’ or ‘urgent’, indicating events requiring im-
mediate medical attention. 

2.2. Study design 

A time-stratified case-crossover study design was used (Carracedo 
et al., 2010; Maclure, 1991). Asthma cases who presented to the emer-
gency department (case day events) were matched to themselves by the 
day of the week, calendar month, and year when they were not 
admitted, yielding three or four controls (control day events) per case. 
For instance, if an asthma ED visit occurred on the first Tuesday of 
January 2005, exposures on the 2nd, 3rd, and 4th Tuesdays of the same 
month would serve as the controls. As individual cases are self-matched, 
serving as their own control, the case-crossover design inherently ad-
justs for confounding by factors that do not vary or slowly vary with time 
(in this case, within one month) such as age, sex, race/ethnicity, body 
mass index, exposure to environmental tobacco smoke, etc. (Mittleman 
and Mostofsky, 2014). The design also eliminates measured or unmea-
sured confounding bias by any long-term trends (Mittleman and Mos-
tofsky, 2014). 

2.3. Environmental exposures 

Daily, residence-level exposures to fine particulate matter with 
aerodynamic diameter ≤2.5 μm (PM2.5), nitrogen dioxide (NO2), sulfur 
dioxide (SO2), ozone (O3), and minimum temperature (Tmin)—hence-
forth, collectively referred to as environmental exposures—were 
assigned to each asthma case by integrating spatially- and temporally- 
refined exposure data. 

We derived citywide spatial surfaces for each environmental expo-
sure from the NYC Community Air Survey (NYCCAS). The overall 
NYCCAS sampling design and the modeling methods are detailed in 
Matte et al. (2013) and Clougherty et al. (2013), respectively. Briefly, air 
quality samples were randomly collected across 150 sites across NYC 
over a two-year period. While PM2.5 and NO2 were monitored 
year-round, O3 was monitored only during summer and SO2 only during 
winter when concentrations of each are elevated. Overnight tempera-
tures (3:00 to 5:00 a.m.; Tmin) were preferred over daily maximum 
temperature or average temperature as they displayed greater spatial 
variation across seasons and were potentially less influenced by local-
ized intermittent shading or sunlight-related microclimate effects. 
Intra-urban spatial variation in each exposure was modeled using land 
use regression (LUR) methods, and final spatial surfaces (maps) were 
derived for a 100-m x 100-m grid using kriging with external drift (KED), 
which combines LUR model output with spatial smoothing (Clougherty 
et al., 2013). These final spatial surfaces were used to create exposure 
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estimates for all individual asthma cases, using the mean concentration 
at 100-m NYCCAS grid centroids within 300 m of each case’s residence. 

Next, to construct a citywide time series for air pollution exposure 
estimates, we retrieved hourly data from the U.S. Environmental Pro-
tection Agency (EPA) Air Quality System (AQS) regulatory monitoring 
stations in NYC, for the period 2005 to 2011. We calculated daily av-
erages at each monitor, which were averaged into one meantime trend 
for the city, as done by Sheffield et al. (2015). For each pollutant, the 
time series was computed on an annual basis. Time series data on daily 
temperature, relative humidity, and dew point temperature were 
collected from the four meteorological stations in the NYC area (JFK 
International Airport, LaGuardia International Airport, Central Park, 
and Newark International Airport), retrieved from the National Oceanic 
and Atmospheric Administration (NOAA) National Climatic Data 
Center. 

Finally, we combined the temporal data with NYCCAS spatial sur-
faces to create year-round residence- and day-specific (i.e., spatio- 
temporal) exposure estimates—as previously in Ross et al. (2013) and 
Shmool et al. (2015a,b). We estimated and assigned exposures on the 
day of ED visit by multiplying the daily average concentration at AQS 
sites by the ratio of: (near-residence (300-m) concentration/mean 
NYCCAS concentration at AQS monitoring sites. Estimates were created 
separately for each pollutant, and for 7 days (lags 0–6) prior to each 
asthma case event., Spatio-temporal temperature estimates were created 
similarly, using NOAA weather monitoring sites. Estimates for relative 
humidity were also derived from NOAA weather data, but were strictly 
temporal, as they were not spatially measured and modeled under 
NYCCAS. 

2.4. Social stressors 

We assigned census tract-level spatial estimates of violent crime rate, 
Socioeconomic Deprivation Index (SDI) score, and racial composition 
indicators to each asthma case based on their residential location within 
a particular tract. There are 2167 census tracts in NYC per American 
Community Survey (ACS) year 2010 census boundaries (US Census 
Bureau, 2010). We excluded 63 smaller tracts (and the asthma events 
within) that had a residential population of fewer than 200 people, 
leaving 2104 final tracts. 

Point-level, date- and time-stamped data on all violent offenses 
(murder and non-negligent manslaughter, aggravated assault, robbery) 
within NYC from 2006 to 2017 were obtained from NYC Police 
Department (New York City Police Department, 2018). Since rape 
crimes are not geocoded, they were not included. For compatibility with 
other studies, we followed the Federal Bureau of Investigation’s (FBI’s) 
Uniform Crime Reporting definitions to code crime (Federal Bureau of 
Investigation, 2022). Crime rates were calculated using the 2009 data, 
which corresponds to the midpoint of our study period. We confirmed 
that spatial patterns in crime are remarkably consistent in NYC, with 
census tract annual-average crime rates correlating at r (Spearman 
correlations) > 0.90 across all data years. Crimes were spatially joined to 
census tracts, summed to obtain counts per tract, and rates per 10,000 
population were calculated using the tract-level residential population, 
obtained from the ACS 2007–2011 five-year estimates (US Census Bu-
reau, 2010) that covered most of our study period. 

SDI is a citywide index that was designed to capture relative material 
deprivation across NYC communities. It was developed using a spatially 
stratified principal components analysis with 25 indicators representing 
multiple dimensions of SEP (e.g., income, poverty, education, employ-
ment/occupation, housing, language, etc.) from the ACS 2007–2011 
five-year estimates at the census tract-level. The process of SDI devel-
opment is described in detail in Clougherty et al. (2021), Humphrey 
et al. (2019), and Shmool et al. (2015a,b). SDI was operationalized as an 
interquartile range (IQR)-standardized score, with higher scores indi-
cating greater tract-level socioeconomic deprivation. 

Racial composition was characterized from ACS 2007–2011 five- 

year estimates of the tract-level proportion of the Hispanic and non- 
Hispanic Black populations. Estimates on proportion of non-Hispanic 
other people of color (including Asians, American Indian and Alaska 
Native, and Native Hawaiian and Other Pacific Islander) were either 
small or not available. 

2.5. Statistical analyses 

We applied a conditional logistic regression (Cox proportional haz-
ards) in the time-stratified case-crossover design, with the risk of ED visit 
for acute asthma (i.e., the case-control indicator) as the outcome, the 
daily estimates of the air pollutants and temperature as the environ-
mental exposures, and tract-level estimates of violent crime rate and SDI 
score as potential effect modifiers. We quantified the associations as 
percent excess risk of asthma ED visit per 10-unit increment in each 
environmental exposure, across lag days 0–6. As air pollution and 
temperature exposures might vary in concentrations and have different 
effects in warm and cold seasons (Anenberg et al., 2020; Bergmann 
et al., 2020), we stratified all our models by warm season (April to 
September) and cold season (October to December and January to 
March). For PM2.5 and NO2, as year-round spatial surfaces were esti-
mated under NYCCAS, both warm and cold season effects were 
considered. Only cold season effects were considered for SO2 and warm 
season effects for O3, as SO2 was measured exclusively in the winter and 
O3 in the summer under NYCCAS. 

First, single-exposure distributed lag models (Schwartz, 2000) were 
constructed, adjusting only for case-day estimates of relative humidity 
fit as natural cubic spline with 3 degrees of freedom (df) (Perperoglou 
et al., 2019). Main exposures of interest were fit as continuous terms. 
Then, the single-exposure models were extended to include multiple 
exposures. Treated as co-exposures, the air pollutants were fit using 
penalized splines of their case-day concentration estimates, and tem-
perature was fit as a natural cubic spline with 3 df. Models for NO2, SO2, 
and O3 were adjusted only for PM2.5 and Tmin. PM2.5 models were 
adjusted only for O3 and Tmin. Tmin models were only adjusted for 
PM2.5 and NO2. Prior to adjusting for any co-exposures, we examined 
relationships among the exposures, and developed models adjusting 
solely for temperature and relative humidity. We examined multi-
collinearity and Variance Inflation Factors (VIFs) with additional in-
clusion of any co-exposure. PM2.5 models were not adjusted for SO2 
because they share a predominant local source in NYC (i.e., residual 
heating oil burning) and have very similar spatial and temporal patterns 
(Clougherty et al., 2013), thereby potentially over-adjusting. Further, 
NO2 and O3 were not mutually adjusted, given the strong inverse rela-
tionship between these two pollutants in NYC (Clougherty et al., 2013). 
Finally, adjusting any other exposures for the effects of NO2 greatly 
increased VIFs and therefore, were not adjusted for NO2. As part of the 
sensitivity analysis, we tested the robustness of results to two alternative 
co-exposure adjustment strategies. First, to assess the influence of 
co-exposure selection for adjustment per se, we adjusted each lag of each 
exposure of interest for case-day lags of all other co-exposures in the 
multi-exposure distributed lag models. Second, to assess the influence of 
lag structure beyond only the case-day lags, we adjusted for the lag days 
of each co-exposure that had the strongest effect estimate in the main 
multi-exposure distributed lag models. 

The combined effects of the environmental exposures and the social 
stressors were assessed by fitting multiplicative interaction terms be-
tween each environmental exposure and quintiles of violent crime rate 
and SDI together in the same multi-exposure distributed lagged models; 
thereby, mutually adjusting for their potential independent interaction 
effects. Due to concerns about spatial clustering of social stressors by 
race and ethnicity (i.e., non-random assignment into census tracts), we 
additionally adjusted for interaction with proportions of Hispanic and 
non-Hispanic Black populations by census tract by including multiple 
interactions terms in a single model. Interaction results were reported as 
the effect of the environmental exposure of interest at each level 
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(quintile) of the social stressor, along with the corresponding p-value of 
the overall interaction term between the exposure and the stressor 
across each lag (significance level ≤0.05). 

Additionally, we examined interactions between each air pollutant 
and temperature by fitting multiplicative interaction terms between the 
continuous terms of each air pollutant and median-dichotomized (low 
and high temperature) categories of spatio-temporal temperature esti-
mates of the same lag day as that of the pollutant under consideration in 
the multi-exposure distributed lagged models. Interactions of the envi-
ronmental exposures with categories of individual age at ED visit (5–9 
years, 10–13 years, and 14–17 years), sex (female and male), and race/ 
ethnicity (Hispanic, non-Hispanic Black, non-Hispanic other people of 
color, and non-Hispanic White) were also assessed. 

All analyses were performed in SAS 9.4 (SAS Institute Inc. SAS 
Version 9.4. Cary, NC; 2014). The study was reviewed and approved by 
the Drexel University Institutional Review Board. 

3. Results 

A total of 145,834 ED visits for childhood asthma were recorded 
between January 1, 2005, and December 31, 2011. Fig. 1 illustrates the 
census tract-level distribution of all asthma case events per 1000 resi-
dents aged 5–17 years across NYC’s boroughs. Most of the events 
occurred among children in the youngest (5–9 years) age group 
(52.82%), male (58.95%), and those who were identified as non- 
Hispanic Black (43.21%) and Hispanic (29.99%). The baseline charac-
teristics of the study population are provided in Table 1. 

The environmental exposure and social stressor profiles for the case 
events are provided in Table 2. Fig. 2 illustrates the NYCCAS spatial 
surfaces of the air pollutants and temperature for all case events. Fig. 3 

illustrates the spatial distribution of the census-tract-level social 
stressors across NYC. 

Each 10 μg/m3 increase in PM2.5 exposures was associated with an 
elevated risk of asthma ED visit in the cold season, with the strongest 
effect on lag day 1 [4.90% (95% CI: 3.77%–6.04%)]. Similar effects, but 
of lower magnitude were observed with PM2.5 exposures in the warm 

Fig. 1. Census-tract-level distribution of all asthma case events per 1000 residents aged 5–17 years across residential boroughs of New York City from 2005 to 2011.  

Table 1 
Baseline characteristics of the study population, stratified by season.  

Characteristic Year-round [N 
(%)] 

Warm season 
[N (%)] 

Cold season [N 
(%)] 

Total case events 145,838 
(22.86) 

62,772 (9.84) 83,066 (13.02) 

Age at ED visit 
5–9 years 77,029 (52.82) 31,906 (21.88) 45,123 (30.94) 
10–13 years 40,877 (28.03) 18,156 (12.45) 22,721 (15.58) 
14–17 years 27,932 (19.15) 12,710 (8.72) 15,222 (10.44) 
Sex 
Female 59,870 (41.05) 25,548 (17.52) 34,322 (23.53) 
Male 85,968 (58.95) 37,224 (25.52) 48,744 (33.42) 
Race/ethnicity 
Hispanic 43,734 (29.99) 17,796 (12.20) 25,938 (17.79) 
Non-Hispanic Black 63,011 (43.21) 28,501 (19.54) 34,510 (23.66) 
Non-Hispanic other 

people of color 
6768 (4.64) 2706 (1.86) 4062 (2.79) 

Non-Hispanic White 6716 (4.61) 3090 (2.12) 3626 (2.49) 
Missing 25,609 (17.56) 10,679 (7.32) 14,930 (10.24) 
Residential borough 
The Bronx 46,854 (32.13) 19,329 (13.25) 27,525 (18.87) 
Brooklyn 42,926 (29.43) 18,625 (12.77) 24,301 (16.66) 
Manhattan 26,999 (18.51) 12,057 (8.27) 14,942 (10.25) 
Queens 24,226 (16.61) 13,616 (9.34) 10,610 (7.28) 
Staten Island 4833 (3.31) 2682 (1.84) 2151 (1.47)  
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season. Each 10-ppb increase in NO2 exposures was associated with an 
elevated risk of asthma ED visit in the warm season across all lag days, 
with the strongest effect observed on lag day 1 [7.86% (95% CI: 6.66%– 
9.07%)]. Similar effects, but of lower magnitude, were observed with 
NO2 exposures in the cold season. Each 10-ppb increase in SO2 expo-
sures was associated with an increased asthma ED visit risk in the cold 
season across lag days 1–6, with the strongest effects on lag day 1 
[8.57% (95% CI: 5.99%–11.21%)]. Each 10-ppb increase in O3 expo-
sures was associated with an increased asthma ED visit risk in the warm 
season across lag days 1–4, with the strongest effects on lag day 1 
[4.75% (95% CI: 3.53%–5.97%)]. Protective effects on asthma ED visit 
risk were observed with elevated temperatures in the warm season, with 
negative associations observed with each 10 ◦F increase in Tmin 

exposures across all lag days, with lag day 6 being the most protective 
[− 16.97% (95% CI: 18.18% to − 15.73%)]. In the cold season, however, 
increments in Tmin were positively associated with asthma ED visit risk 
across lag days 0–2, with lag day 0 demonstrating the strongest effect 
[2.26% (95% CI: 1.25%–3.28%)]. Complete details on the main effects 
of the environmental exposures are provided in Supplementary Table S1 
and illustrated in Fig. 4, Fig. 5, and Supplementary Fig. S1. 

The observed associations with NO2, SO2, O3, and Tmin exposures 
were robust to both alternative co-exposure adjustment strategies, 
yielding similar results. Associations with PM2.5, however, were sensi-
tive to the strategy where we adjusted for the strongest lag day effects of 
all the co-exposures, identified in the main multi-exposure distributed 
lag models. We observed negative associations with PM2.5 exposures in 

Table 2 
Residence-level, daily spatio-temporal environmental exposures and census tract-level social stressor profiles of asthma case events.   

Minimum Maximum Mean Standard Deviation Median Interquartile Range 

Residence-level, daily environmental exposures 
PM2.5, μg/m3 1.57 58.68 11.51 7.02 9.51 8.58 
NO2, ppb 3.73 100.84 27.59 10.73 25.97 13.89 
SO2, ppb 0.00 57.75 3.99 4.12 2.68 3.88 
O3, ppb 0.64 66.39 20.19 9.82 19.38 13.98 
Tmin, ◦F 5.11 85.95 46.28 14.98 46.65 21.75 
Tract-level social stressors 
Violent crime rate 0.00 2262.30 65.07 44.26 58.08 45.50 
SDI − 1.63 2.39 0.65 0.66 0.69 1.01 
% Hispanic 0.00 0.99 0.41 0.25 0.40 0.44 
% Non-Hispanic Black 0.00 0.99 0.37 0.28 0.31 0.45 

PM2.5: fine particulate matter; NO2: nitrogen dioxide; SO2: sulfur dioxide (winter-only); O3: ozone (summer-only); ◦F: degree Fahrenheit; μg/m3: microgram per cubic 
meter; ppb: parts per billion; NYCCAS: New York City Community Air Survey; Violent crime rate per 100,000 residents; SDI: Socioeconomic Deprivation Index score. 

Fig. 2. Spatial surfaces (NYCCAS estimates) of the environmental exposures for all asthma case events.  
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the warm season on lag days 0–4 and positive associations with lag days 
5 and 6. In the cold season, positive associations of about the same 
magnitude across all lag days were observed. The results of the sensi-
tivity analyses are presented in Supplementary Tables S2 and S3 and 
illustrated in Supplementary Figs. S2 and S3. 

On examining interactions between the environmental exposures 
and social stressors, we found evidence in the opposite-to-hypothesized 
direction—stronger effects were observed in the lower violence and SDI 
quintiles compared to higher violence and SDI quintiles. 

With exposures to PM2.5, interaction with violence was observed on 
lag day 1 in the warm season (p interaction = 0.05), with the strongest 
effect seen in violence quintile 2. With exposures to NO2, interactions 
with violence were not evident across any of the seasons. However, we 
did observe a non-linear pattern of NO2 effects. The strongest NO2 ef-
fects were seen in the violence quintile 2 on lag days 1 and 2 in the warm 
season, and in violence quintile 1 on lag day 2 in the cold season. With 
exposures to SO2, interactions with violence were also not evident, and 
no distinct effect pattern was observed in the cold season. With expo-
sures to O3, the interaction was evident on lag day 2 in the warm season 
(p interaction = <0.01), where a non-linear, ‘U-shaped’ pattern was 

observed, with the strongest effects seen in the lowest violence quintile 1 
followed by quintile 5. With exposures to Tmin, interactions with 
violence were not evident across both seasons. However, an ‘inverted V- 
shaped’ pattern was observed on lag day 0 in the cold season, where 
violence quintile 3 had the strongest Tmin effect. Complete details on 
the interactions between the environmental exposures and quintiles of 
violent crime rate (adjusted for interactions with SDI and racial 
composition indicators) are provided in Supplementary Table S8 and 
illustrated in Figs. 6 and 7, and Supplementary Fig. S4. 

On examining interactions with SDI, with exposures to PM2.5, the 
interaction was evident on lag day 3 in the warm season (p interaction =
0.01), with the strongest effect seen in SDI quintile 3. In the cold season, 
interactions with SDI were observed on lag days 1 and 2 (p interaction =
<0.01 and < 0.001, respectively) On lag day 1, an ‘inverted J-shaped’ 
pattern was seen with stronger PM2.5 effects observed in the lower SDI 
quintiles 1 to 3, and on lag day 2, the strongest PM2.5 effect was observed 
in SDI quintile 3. With exposures to NO2, interactions with SDI were 
observed across both seasons. In the warm season, the interaction was 
evident on lag days 1 and 2 (p interaction = 0.03 and 0.05, respectively), 
with the strongest effects seen in SDI quintile 1. Likewise, in the cold 

Fig. 3. Spatial distribution of the census tract-level social stressors and racial composition indicators across New York City.  
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season, the interactions were evident on lag days 1 and 2 (p interaction 
= <0.01 and < 0.001, respectively), where an ‘inverted V-shaped’ 
pattern was observed with the strongest effect seen in SDI quintile 3. 
With exposures to SO2, interaction with SDI was observed on lag day 2 in 
the cold season (p interaction =<0.01), also with an ‘inverted V-shaped’ 
pattern of effects. With exposures to O3, the interaction was evident on 

lag day 5 (p interaction = 0.01). However, we did not see a distinct 
pattern of effects. With exposures to Tmin, interaction with SDI was 
observed on lag day 2 (p interaction = <0.01) in the warm season, with 
the strongest protective effect of Tmin seen in SDI quintile 1. Similar 
results were observed for lag days 4, 5, and 6 (p interaction = 0.03, 0.05, 
and 0.02, respectively). In the cold season, interaction with SDI was 

Fig. 4. Warm season main effects of (A) PM2.5, (B) NO2, (C) O3, and (D) Tmin, following the main co-exposure adjustment strategy.  

Fig. 5. Cold season main effects of (A) PM2.5, (B) NO2, (C) SO2, and (D) Tmin, following the main co-exposure adjustment strategy.  
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evident on lag day 3 (p interaction = 0.05), where a ‘U-shaped’ pattern 
was observed with the strongest Tmin effects seen in SDI quintiles 1 and 
2. Complete details on the interactions between the environmental ex-
posures and quintiles of SDI score (adjusted for interaction with violent 
crime rate and racial composition indicators) are provided in Supple-
mentary Table S9 and illustrated in Figs. 8 and 9, and Supplementary 

Fig. S5. 
We also found evidence of interactions between the air pollutants 

and temperature, and between the environmental exposures and indi-
vidual age at admission, sex, and race/ethnicity. These results are dis-
cussed in the Supplementary Text, and the complete details are provided 
in Supplementary Table S6—S9 and illustrated in Supplementary 

Fig. 6. Warm season effects of (A) PM2.5, (B) NO2, (C) O3, (D) Tmin by quintiles of violent crime rate from models including interaction terms.  

Fig. 7. Cold season effects of (A) PM2.5, (B) NO2, (C) SO2, (D) Tmin by quintiles of violent crime rate from models including interaction terms.  
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Fig. S6—S9. 

4. Discussion 

In this study, using SPARCS data from 2005 to 2011, we examined 
the season-specific independent and combined effects of multiple 

ambient air pollutants and temperature, and their interactions with 
neighborhood violent crime and socioeconomic deprivation to discern 
susceptibility to childhood asthma morbidity in New York City. 

The positive associations observed between PM2.5 exposures and 
asthma in the current study were more apparent during the cold season. 
This difference may be explained by increased PM2.5 emissions (vis-à-vis 

Fig. 8. Warm season effects of (A) PM2.5, (B) NO2, (C) O3, (D) Tmin by quintiles of Socioeconomic Deprivation Index score from models including interaction terms.  

Fig. 9. Cold season effects of (A) PM2.5, (B) NO2, (C) SO2, (D) Tmin by quintiles of Socioeconomic Deprivation Index score from models including interaction terms.  
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exposures) from local sources like burning of residual heating oil and 
vehicular traffic (with more idling and high cold-start emissions (Aru-
mugam Sakunthalai et al., 2014) and less effective exhaust filtration 
systems (Mahadevan et al., 2015)) in the winter months in NYC 
(Clougherty et al., 2013). Similarly, the positive associations with SO2 
exposures could be explained by local emissions also from residual 
heating oil burning during the cold season as well as long-range inter-
state transport of SO2 (e.g., from Ohio Valley) into the northeastern U.S. 
(Bergin et al., 2007). These cold season effects, however, could addi-
tionally be explained by increased likelihood of exposures to household 
allergens due to greater time spent indoors and peaks in seasonal 
influenza and other respiratory illnesses during winters that may exac-
erbate asthma. The positive associations observed with O3 exposures in 
the warm season are in keeping with the fact that O3, a secondary air 
pollutant, is formed from its precursor pollutants (oxides of nitrogen and 
volatile organic compounds) by undergoing photochemical reactions in 
sunlight and has greater concentrations during the warm season (Jhun 
et al., 2015; Sillman, 1999). In keeping with the season-specific mea-
surements of SO2 and O3 under NYCCAS and to minimize the exposure 
measurement error, we presented only cold season SO2 and warm season 
O3 effects. However, associations of asthma with SO2 during summer 
and O3 during winter seasons have also been reported in prior literature, 
albeit the findings overall remain mixed. In their meta-analysis, Berg-
mann et al. (2020) found no conclusive evidence of effect modification 
by season on asthma with PM2.5, NO2, and SO2 exposures and only found 
increased risks for asthma morbidity during the warm season with ex-
posures to O3. 

Further, temperature elevations during the cold season were asso-
ciated with a greater risk of asthma ED visits. This association could be 
due to behavioral changes involving greater outdoor mobility on 
warmer days during colder months, thereby increasing the likelihood of 
ambient environmental exposures and stronger asthma effects. In 
contrast, we observed a lower risk of asthma ED visits (i.e., protective 
effects) with elevated temperatures during the warm season. This in-
verse association could have resulted, in part, from better asthma 
treatment-seeking behavior and medication adherence, especially 
among individuals with chronic asthma, during the spring and summer 
allergy seasons. In the prior literature, strong evidence exists for positive 
associations of both hot and cold temperature extremes with adverse 
asthma outcomes. Cong et al. (2017) reported in their meta-analysis that 
decreases in short-term temperature exposures were associated with 
increased odds of childhood asthma. In a more recent meta-analysis, 
Han et al. (2023) reported that exposure to extreme cold was associ-
ated with increased asthma risk among children and extreme heat ex-
posures also conferred an increased risk of asthma, albeit to a greater 
extent in adults. 

We found evidence of non-linear effects and interactions between the 
environmental exposures and social stressors. These findings were in the 
opposite-to-hypothesized direction—the risk of asthma ED visits asso-
ciated with elevated environmental exposures was generally stronger in 
children belonging to the lower violence and deprivation communities 
and not in higher violence and deprivation communities, as had been 
predicted. These findings are novel and add to the emerging evidence 
suggesting potential threshold or saturation effects in stress-related 
susceptibility to the health effects of air pollution and temper-
ature—wherein, potential asthma impacts could be predominantly 
explained by social stressors in high-stressor (violence and deprivation) 
communities, with lesser apparent variation by air pollution or tem-
perature exposures (Clougherty et al., 2014, 2022). 

In a similar case-crossover analysis, using 2005 to 2011 SPARCS 
data, Sheffield et al. (2019) examined the effects of interactions between 
daily, residence-level O3 exposures and census tract-level violent crime 
and socioeconomic deprivation on childhood asthma ED visits during 
the summer season (June to August) in NYC. The main effects of O3 were 
similar to those observed in the current study but were mostly stronger 
in communities with greater violence or socioeconomic deprivation. 

However, the authors also noted that the highest quartile for violent 
crime did not consistently confer a greater risk than the lower quartiles 
and reported some evidence of threshold or saturation effect in 
crime-related susceptibility to O3 effects. We anticipate that the 
non-linear relationships with violent crime observed with exposures to 
O3 in the current study became more apparent with the inclusion of 
year-round ED visits data (vs summer-only in Sheffield et al.) that 
increased the sample size and statistical power to examine the in-
teractions. Also in NYC, using vital records and SPARCS data on live 
births from 2008 to 2010, Shmool et al. (2015a,b) examined the in-
teractions between spatial NYCCAS surfaces of NO2 and census 
tract-level socioeconomic deprivation on term birth weight, adjusting 
for maternal SEP characteristics and PM2.5 exposures. The authors found 
evidence of non-linear interaction with inverse associations observed 
between exposures to NO2 and birthweight in the least and the most 
socioeconomically deprived neighborhoods. In a cross-sectional anal-
ysis, Hicken et al. (2013) assessed whether social disadvantage modified 
associations between blood pressure and monthly-average PM2.5 expo-
sures estimated before the baseline examination in the Multi-Ethnic 
Study of Atherosclerosis (MESA) cohort established across 6 U.S. cit-
ies, including Northern Manhattan, NYC. Contrary to their hypothesis, 
the authors found that greater levels of income were associated with 
stronger relationships between PM2.5 and blood pressure. In a similar 
study based out of the MESA cohort, Allen et al. (2009) observed that the 
association between annual-average PM2.5 exposures and aortic calci-
fication was stronger in individuals with higher incomes than with those 
with lower incomes. In a more recent study, Miller et al. (2022) exam-
ined the effects of interactions between early life stress (ELS) and PM2.5 
exposures on structural brain development among adolescents in Cali-
fornia. Exposures to PM2.5 were linked to volumetric alterations in 
various areas of the grey and white matter of the brain in individuals 
who experienced less severe ELS. Those who experienced more severe 
ELS had fewer negative effects from exposures to PM2.5. 

This study has several noteworthy strengths. First, combined effects 
of exposures to multiple air pollutants, temperature, and social stressors 
on asthma morbidity have been rarely examined. This study, to our 
knowledge, is one of the few to examine interactions between multiple 
socio-environmental co-exposures and highlight potential non- 
linearities in their effects. Second, we had a large sample size with 
year-round data on childhood asthma ED visits included for all of NYC 
over the 7-year study period. Third, we assigned fine-scale spatio-tem-
poral environmental exposure estimates (daily, at 300-m buffer using 
100-m exposure concentrations) to each presenting asthma case, 
thereby reducing the possibilities of ecological bias in our observed as-
sociations. Fourth, individual-level covariates like sex, race/ethnicity, 
genetic predisposition, and exposure to environmental tobacco smoke, 
which are generally of concern in asthma epidemiology, were inherently 
adjusted for in the case-crossover design and could not have confounded 
our results. 

This study, however, is also prone to some limitations. First, we 
examined exposure-response relationships in relation to acute, post- 
natal, ambient air pollution and temperature exposures. Long-term 
(Anenberg et al., 2022; S. S. Liu et al., 2021; Tiotiu et al., 2020), 
pre-natal (Hazlehurst et al., 2021; Hehua et al., 2017; Lee et al., 2018), 
as well as indoor air pollution (Breysse et al., 2010; Tiotiu et al., 2020) 
and environmental allergens such as mold (Dick et al., 2014; Michaels, 
2017) and pollen (Erbas et al., 2018; Kitinoja et al., 2020) have been 
independently linked with childhood asthma but were not measured in 
this study and may have contributed to residual confounding. Second, 
we estimated environmental exposures at residence, but children could 
have been exposed at school, contributing to exposure measurement 
error. Third, we did not have data on assets like air conditioner use that 
could have influenced exposures to air pollution and temperature, also 
contributing to measurement error. Fourth, we lacked information on 
asthmatic medication and treatment use. This may have confounded our 
results as healthcare utilization for asthma varies by SEP and 
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race/ethnicity, differentially influencing asthma outcomes (Johnson 
et al., 2021; Keet et al., 2017; K. Sullivan and Thakur, 2020). 

5. Conclusion 

We observed elevated ED visit risks for childhood asthma with ex-
posures to PM2.5 and NO2 during both the cold and warm seasons, SO2 
and Tmin during the cold season, and O3 during the warm season in New 
York City. Non-linear effects and interactions with violent crime and 
socioeconomic deprivation were evident, with lower violence and 
deprivation quintiles generally demonstrating stronger exposure- 
response associations, indicating potential threshold or saturation ef-
fects in socio-environmental stressor synergism. Our findings contribute 
to a growing body of literature which seeks to disentangle the complex 
contributions of multiple social stressors in modifying the effects of 
environmental exposures resulting in health disparities. 
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